Technical Brief on Sustainable Energy

LIGHTING SYSTEMS

SwitchGarment

Promotion of Sustainable Energy Practices in the Garment Sector in Cambodia

GERES | Cambodia Office,
Phnom Penh
Building #7B (3rd floor),
St 81 corner St 109,
Phnom Penh
+855 (0) 16 600 617 /
+855 (0) 78 767 499
www.geres.eu
cambodia@geres.eu

E-mail us at:
switchgarment@gggi.org
Website:
switch.taftac-cambodia.org
Follow us on social media:
@switchgarment

GGGI | Global Green Growth Institute
Ministry of Environment, Techo Heritage
Building, No 503, Road along Tonle Bassac,
Sangkat Tonle Bassac, Khan Chamkarmon,
Phnom Penh, Cambodia
www.gggi.org
cambodia@gggi.org

Developed by:
Geres
With the contributions of:
Edition:
December 2022

Geres, the Global Green Growth Institute (GGGI) and the Textile, Apparel, Footwear & Travel goods Association in Cambodia (TAFTAC) are implementing the project "Promotion of Sustainable Energy Practices in the Garment Sector in Cambodia".

The project aims at increasing competitiveness and decreasing environmental impact towards sustainable production in the Cambodian garment industry and focuses on understanding the key barriers that inhibit the growth of the garment sector and will identify the opportunities that can help in the sustainable growth of the garment sector in Cambodia.

This will be achieved by providing hand-holding support to Garment manufacturing units in the country to identify and adopt sustainable energy practices.

This technical brief was produced with the inputs and extensive review provided by Global Green Growth Institute (GGGI) and Textile Apparel, Footwear & Travel Goods Association in Cambodia (TAFTAC).
Lighting is used to compensate the lack of natural light in the factory. To be able to work efficiently, an optimum level of illumination is needed on the workstation and can vary depending on the task. Respecting the recommendation (p03) can improve both productivity and wellbeing of the employees.

Appropriate lighting for industrial applications depends on both the type of activity and the configuration of the premises. Industrial applications require efficient, safe and robust lighting that can withstand an often demanding environment. Operation costs can be significantly reduced by using new and more efficient technologies, combined with appropriate management. Appropriate lighting quality and illumination also improves working conditions.

Lighting sources

Natural Light

The most common source of natural light is the sun. It covers all colors spectrum, and its intensity varies during the day.

Advantages
- Free and abundant resource;
- Respect circadian rhythm (day/night cycle);
- Better productivity and accuracy;
- Quality of the lighting for health.

Disadvantages
- Irregular source of light:
 - Cloudy weather / Night time;
 - Building design or layout might not let enough natural light into the premises when needed
- Solar radiation can cause excessive heat in a building.

Artificial Light

This is the light that is generated with a source of energy. Depending on the lamps used, the quality of the lighting can differ.

Advantages
- Compensate for the lack of Natural light in a building;
- Wide variety of shapes, sizes, color, levels of brightness, efficiency.

Disadvantages
- Costs:
 - Requires energy to operate;
 - Limited life time;
- Affect sleeping pattern;
- If not designed properly:
 - Requires energy to operate;
 - Affects productivity and accuracy.

Proper balance between both is needed

A proper equilibrium between daylight and artificial light is needed to maintain optimal lighting to workers in an efficient manner.
The importance of an efficient lighting system for health is often underestimated: deficiencies in the illuminance system can result in worker discomfort, headaches and visual disorders which are common in the workplace but can be avoided by optimizing the lighting system and conforming to national standards.

Recommendation and legislation:
Depending on the work to do, recommendation is different. Cambodian Legislation is defining the level light needed:

<table>
<thead>
<tr>
<th>Average Illumination (Lux)</th>
<th>Textile</th>
<th>Garment Industry</th>
<th>Administration Building, Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>Combing and extrusion of yarn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>Spinning of yarn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>750</td>
<td>Weaving, knitting and embroidery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>Dyeing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Drying room</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>Auto Printing room</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>Colour inspection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>750</td>
<td>Embroidery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>750</td>
<td>Cutting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>Linking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>Sewing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>Ironing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>Final inspection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>Writing, reading, data processing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>Computer room</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>Technical drawing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>Meeting room</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>Reception Desk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>Archive</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Definitions

Luminous flux
In lumens (lm): the amount of visible light emitted by the source.
The higher the lumen value, the brighter the bulb.

Luminous efficacy
In lumens per watt (lm/W): ratio of luminous flux emitted to the electric power absorbed: 2 lights of 30 W may have a different luminous efficacy. They consume the same amount of energy but light up differently.

Average rated life
In hours (h): statistical measure (or estimate) of how long a product is expected to perform its intended functions under a specific set of environmental, electrical and mechanical conditions. Ex: 40000 h (L90/B20) = 40000 hours of operation, the source still provides 90% of the initial luminous flux, except for 20% of them.

Color Rendering Index (CRI)
Quantitative measure about the capacity of the lamp to reveal natural colors of objects (scored on a scale from 0 to 100, with 100 being the best).

Correlated Color Temperature (CCT)
In kelvin (K): qualifies the lighting atmosphere of the illuminated space. Most light bulbs will range from 2700K (warm, incandescent color) to 5000K or higher (crisp, white daylight color).
1. **Optimize configuration**

1. Sometimes only adjusting the height of lamp is sufficient to provide enough lighting at the workstation.
 - Low bay (installed lower than 5 m)
 - Medium bay (installed between 5 – 7 high)
 - High bay (installed higher than 7 m)

2. Sometimes, only adjusting the position of the lamp can drastically improve the level of light at workstation.

2. **Light Control**

By providing flexibility to the use of light, savings can be made by not using light when not needed.

1. Install separate on-off switch to divide lighting control per area instead of one general on-off switch
2. Install motion sensors in the circulating areas to avoid useless use of light.
3. Install daylight sensors to turn off pilot lighting and avoid lights being turned on when daylight is sufficient.

3. **More efficient technologies**

More efficient technologies are now cost competitive with conventional lighting technologies providing the same or better quality results while using less energy to operate.

1. Install high frequency (HF) electronic ballasts in place of conventional ballasts for fluorescent lamps.

2. Replace conventional Metal Halide Bay light with LED Bay light. Indeed, LED need less electricity to operate, and have a better long life time. A particular attention will be needed on the CTT and CRI when selecting the LED, as LED range is very wide.

3. Install energy efficient LED lamps in place of “Conventional” fluorescent lamps.

4. **Maintenance**

Schedule, organize and record regular maintenance/replacement/cleaning. Proper and regular maintenance of the equipment can maintain energy and cost savings.
5. Habits to reduce consumption

1. Avoid lighting unoccupied area and turn off the light when not needed.
2. Remove some lamps in the over lighted areas (glare, overconsumption), while ensuring consistent lighting and compliance with regulation.

6. Daylight use

Some device exist to maximize daylight in an industrial building, without overheating the building.

1. Installation of solar tube light (see image).
2. Installation of a transparent roof to maximize natural light.

Solar tube lights are more expensive, but are better to prevent from the risk of heating up the workspace area.

Summary & Recommendation

1. Adjust the lights at appropriate height and place.
2. Install sensors in circulating areas.
3. Replace lamps with more efficient technology.
4. Schedule regular maintenance of equipment.
5. Turning off the light when not needed: enough natural light, unoccupied workspace.
6. Install solar tube light or a transparent roof to maximise natural light.

Optimise configuration
Light control
More efficient technologies
Maintenance
Habits to reduce consumption
Daylight use
4.1 – Types of lamps and their features

<table>
<thead>
<tr>
<th>Type of Lamp</th>
<th>Luminous Efficacy (lm/W)</th>
<th>CRI</th>
<th>Application</th>
<th>Typical Life (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incandescent</td>
<td>8 – 18 (Avg: 14)</td>
<td>Excellent (100)</td>
<td>Home, restaurant, general, emergency lighting.</td>
<td>1000</td>
</tr>
<tr>
<td>Halogen Lamps</td>
<td>18 – 24 (Avg: 20)</td>
<td>Excellent (100)</td>
<td>Display, flood light, stadium exhibition grounds, construction area.</td>
<td>2000 – 4000</td>
</tr>
<tr>
<td>Fluorescent Lamp</td>
<td>46 – 60 (Avg: 50)</td>
<td>Good W.R.T coating (67-77)</td>
<td>Office, shop, hospital, homes.</td>
<td>5000</td>
</tr>
<tr>
<td>Compact Fluorescent Lamp (CFL)</td>
<td>40 – 70 (Avg: 60)</td>
<td>Very Good (85)</td>
<td>Hotel, shop, home, office.</td>
<td>8000 – 10000</td>
</tr>
<tr>
<td>High pressure mercury (HPMV)</td>
<td>44 – 57 (Avg: 50)</td>
<td>Fair (45)</td>
<td>General lighting in factory, garage, car park, flood light.</td>
<td>5000</td>
</tr>
<tr>
<td>High pressure sodium (HPSV)</td>
<td>67 – 121 (Avg: 90)</td>
<td>Fair (22)</td>
<td>General lighting in factories, warehouse, street lighting.</td>
<td>6000 – 12000</td>
</tr>
<tr>
<td>Low pressure sodium (LPSV)</td>
<td>101 – 175 (Avg: 150)</td>
<td>Poor (10)</td>
<td>Road ways, tunnels, canals, street lighting.</td>
<td>6000 – 12000</td>
</tr>
<tr>
<td>Metal halide lamps</td>
<td>75 – 125 (Avg: 100)</td>
<td>Good (70)</td>
<td>Industrial bays, spot lighting, flood light, retail store.</td>
<td>8000</td>
</tr>
<tr>
<td>LED Lamps</td>
<td>50 – 130 (Avg: 90)</td>
<td>Very good (80)</td>
<td>Office, industry, outdoor, retail, hospital, etc.</td>
<td>45000</td>
</tr>
<tr>
<td>Induction Lamps</td>
<td>65 – 90 (Avg: 75)</td>
<td>Very Good (80)</td>
<td>General lighting, factory, warehouse, street lighting, food lighting, etc.</td>
<td>80000</td>
</tr>
</tbody>
</table>

4.2 – Lamp parts and Control gear

- **Fixture**: is for containing an electric lamp that provides illumination. All light fixtures have a fixture body and one or more lamps.

- **Reflectors**: is equipped with a high quality internal mirror, which follows exactly the parabolic shape of the lamp.

- **Diffusers**: is a mechanism for scattering your light output. It reduces harsh shadows and balances your lighting effects, creating even, soft light (like a lampshade) on the targeted area.

- **Ballast**: is used for countering negative resistance characteristics of any discharge lamps. There are 2 types, the conventional magnetic ballast and the modern electronic ballast (more energy efficient).
Energy Management Steps

A step-by-step approach for assessing energy efficiency of lighting system.

01. Current state of the installation

Inventory of the material and the use of the system. Knowing the components and requirements of the installation will help pre-identify potential improvement and prepare further analysis:
- Number and type of lamp
- Location
- Type and zone of use
- Rated power and efficacy
- Daily operating hours (h/day)
- Etc

02. Measurement

Taking detailed measurements of the installation is the starting point for improvement. Is my installation conform with regulation? Evaluate the quality of power supply:
- Measure and document the lux levels at various plant locations at working level;
- Measure and document the voltage, current, power factor and power consumption at various input points.

03. Data Analysis

Once measurement is done, compare the data collected against the Cambodian regulation to know if the lighting level is conform:
- Compare the measured values with regulation requirements.

04. Equipment Analysis

Analyzing the individual components to identify potential improvements on the installation, understand the actual lifetime of the products, and monitor their quality:
- Collect and analyze the failure rates of lamps, ballasts and the actual life expectancy levels from the past data.

05. Implementation

Based on careful assessment and evaluation, identify improvement options, based on the result of the previous steps.
- Considering the info gathered in this technical brief, propose improvement (technical improvement, possible investment, energy management, etc.), indicate the potential savings (in energy and in $) or impacts and the priority given to the implementation of each improvement.

Raising Awareness among employees on lighting waste and use is also really important to improve energy efficiency.

In parallel, train employees in the efficient use of the lighting system.
Geres, the Global Green Growth Institute (GGGI) and the Textile, Apparel, Footwear & Travel goods Association in Cambodia (TAFTAC) are implementing the project "Promotion of Sustainable Energy Practices in the Garment Sector in Cambodia".

The project aims at increasing competitiveness and decreasing environmental impact towards sustainable production in the Cambodian garment industry and focuses on understanding the key barriers that inhibit the growth of the garment sector and will identify the opportunities that can help in the sustainable growth of the garment sector in Cambodia.

This will be achieved by providing hand-holding support to Garment manufacturing units in the country to identify and adopt sustainable energy practices.

This technical brief was produced with the inputs and extensive review provided by Global Green Growth Institute (GGGI) and Textile Apparel, Footwear & Travel Goods Association in Cambodia (TAFTAC).